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We explain the emergence of organized structures in two-dimensional turbulent flows 
by a theory of equilibrium statistical mechanics. This theory takes into account all 
the known constants of the motion for the Euler equations. The microscopic states 
are all the possible vorticity fields, while a macroscopic state is defined as a 
probability distribution of vorticity at each point of the domain, which describes in 
a statistical sense the fine-scale vorticity fluctuations. The organized structure 
appears as a state of maximal entropy, with the constraints of all the constants of the 
motion. The vorticity field obtained as the local average of this optimal macrostate 
is a steady solution of the Euler equation. The variational problem provides an 
explicit relationship between stream function and vorticity, which characterizes this 
steady state. Inertial structures in geophysical fluid dynamics can be predicted, using 
a generalization of the theory to potential vorticity. 

1. Introduction 
The appearance of coherent structures is one of the most striking features of two- 

dimensional turbulence. While there is an obvious tendency in ordinary fluid 
turbulence for the system to try to increase its disorder, at the same time there are 
circumstances in which a sort of ‘macroscopic’ order seems to emerge from what 
appears to be ‘microscopic’ disorder. (The term microscopic does not refer here to 
any molecular motion but to a fine-scale turbulent field in a continuous medium.) As 
we are interested in situations where the dynamics is dominated by the inertial terms 
(high Reynolds number), we make the reasonable assumption that the fluid is 
incompressible and perfect, and so its dynamics is governed by the classical 
incompressible Euler system. Then the straight question is : how can this behaviour 
of the fluid be explained or predicted from this set of equations ? The observation of 
the merging of two like-sign vortices, experimentally (Hopfinger 1989 ; Caperan 
1989; Sommeria, Meyers & Swinney 1988) or in numerical simulations (Overman & 
Zabusky 1982), shows that the final ‘macroscopic’ state does not depend on the very 
variable nature of the intermediate ‘microscopic ’ states due to the complicated 
deformation of the vortices by mutual straining. This suggests that an explanation 
of the phenomenon must be of a statistical nature. Of course this conclusion is not 
new, and there have been several attempts to build up some statistical 
hydrodynamics, beginning with the pioneering work of Onsager (1949). 

We can classify all attempts to apply the methods of statistical mechanics to fluid 
dynamics into two categories. I n  the first one we find several works which have 
continued Onsager’s approach. The idea was to approximate the continuous Euler 
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system by a great (but finite) number of point vortices. This leads to a finite- 
dimensional Hamiltonian system, to which the methods of statistical mechanics can 
be applied ; see for example Novikov (1976), Poitin & Lundgren (1976). Particularly 
interesting presentations and discussions of this approach can be found in 
Montgomery (1985) and Saffman & Baker (1979). Though very enlightening, this 
approach reveals a severe difficulty. There are many different ways to  approximate 
a continuous vorticity by a cloud of point vortices. And different approximations can 
lead to very different statistical equilibrium states. So, the thermodynamical 
equilibrium state that we can associate to a continuous vorticity depends 
dramatically on arbitrary choices (this difficulty was underlined by Onsager). 

There is another way to approximate the two-dimensional Euler system: we 
decompose the vorticity into a Fourier series and truncate the description to a finite 
number of Fourier coefficients. One can prove a Liouville theorem for the truncated 
system (in the phase space of Fourier coefficients, the volume element is conserved). 
This suggests again that the methods of statistical mechanics be employed (Lee 
1952; Kraichnan 1975; Kraichnan & Montgomery 1980). It happens that after the 
truncation, there remain only two constants of the motion: the energy, and the 
mean-square vorticity or enstrophy. Then the Gibbs canonical ensemble, 
corresponding to these two constraints is easily obtained. Here also there is a serious 
obstacle. When we consider the truncated system, instead of the full Euler system, 
we lose the information given by all the integral functionals of the vorticity (except 
enstrophy), which are constants of the motion for the full system (this is due to the 
law of vorticity conservation along the trajectories of the fluid particles). As a 
consequence, the significance of the equilibrium states of the truncated system for 
the full one is far from obvious. If the system were ergodic in some sense (this is the 
underlying hypothesis of any statistical mechanics approach) it can only be on the 
‘ submanifold ’ of the phase space defined by all the constants of the motion fixed a t  
their initial value. To overcome this difficulty, one can try to construct Gibbs states 
for the full Euler system by a limit process when the number of Fourier Coefficients 
goes to infinity. This was done by Boldrighini & Frigio (1980) in a very interesting 
work. These authors succeeded in constructing a family of Gibbs states for the 
infinite-dimensional system, associated with the law of vorticity conservation along 
the trajectories of the fluid particles. Unfortunately, these probability measures are 
supported by very ‘ large ’ functional spaces of generalized functions ; so that not only 
are the mean energy and enstrophy of these states infinite but the phase space of 
bounded measurable vorticity functions, on which the Eulerian flow can be defined, 
is of null measure. So, it is only a t  a formal level that this makes sense. 

The main conclusion that can be drawn from this short overview is that, although 
the finite-dimensional approximations of Euler equations can provide a good 
representation of the flow during a finite time, the information that the 
thermodynamics (or long-time dynamics) of such systems gives on the behaviour of 
the full system is highly questionable. 

To introduce our approach, let us briefly recall the standard ingredients of classical 
statistical mechanics. We start with a Hamiltonian system which gives the dynamics 
of a great number of particles and which is the microscopic level of description of the 
system. Then, a t  a macroscopic level, we consider some relevant means, which we call 
macroscopic observables. To these two levels of description we associate an entropy 
functional using Boltzmann’s formula S = klog W ,  where W is the volume occupied 
in the phase space (endowed with the invariant Liouville measure) by the set of all 
the microstates giving the same macrostate. Maximizing the entropy functional then 
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gives the equilibrium states. Setting apart the ergodic aspect of the problem, the 
justification of the method comes from a concentration property : an overwhelming 
majority of microstates correspond to the maximum entropy macrostate ; so that it 
has a high probability of being observed. This concentration property (which can be 
proved in the general framework of large-deviation theory) is essential as it justifies 
the use of Boltzmann’s entropy. 

Now, when we work with the Euler system, we deal with the infinite-dimensional 
phase space of bounded vorticity functions on which the Eulerian flow is defined and 
which gives the microscopic level of description. Although the Euler equation has an 
Hamiltonian structure (Arnol’d 1966 ; Olver 1986), no Liouville theorem is known, 
so we use a more general point of view of statistical mechanics. Such an approach, 
inspired by Jaynes (1985), provides a method of finding the ‘most probable’ 
probability law for a random process, among all the possible laws compatible with 
the known information on the system. Remarkable success has been obtained with 
this approach in the very different fields of image analysis and data processing, and 
the power of the method is justified on a firm mathematical basis by a theorem of 
concentration (Robert 1989). We give a macroscopic description of the system by 
means of Young measures: a t  each point we have a probability distribution of 
vorticity which gives, in some statistical sense, a local description of the small-scale 
oscillations of the microscopic vorticity functions. Then, although we no longer have 
a Liouville measure at our disposal, we define an entropy functional on the set of 
macrostates. It is the Kullback entropy of probability theory, which appears as a 
straightforward generalization of Boltzmann’s mixing entropy. Maximizing the 
entropy gives the equilibrium states. The method is justified as we can prove that the 
maximum-entropy state satisfies a natural concentration property, which is 
conserved by the Eulerian flow, in the phase space. 

Besides the fact that we work with the full Euler system and take into account all 
the known constants of the motion, our approach has the following advantages. 
First, we can provide mathematical proofs of the essential properties of concentration 
and invariance. Furthermore, it gives clear formulae that permit quantitative 
comparison to experiments and numerical simulations (Sommeria, Staquet & Robert 
1991). After brief summaries of the two-dimensional Euler equations in $2, the 
theory is explained in $3  using simple physical arguments. The resulting equations 
and their consequences are discussed in $55-7. Many doubtful principles of maximum 
entropy have been proposed, using vague physical arguments. Therefore it is 
important to precisely state the mathematical justification of the present theory, and 
this is done in $4, referring to the papers by Robert (1989, 1990, 1991) for the proofs 
of the theorems. Nevertheless the physical meaning and the consequences of the 
theory can be understood without this $4, and the reader can proceed directly to $5.2. 

2. The two-dimensional incompressible Euler equation 
2.1. The equations 

Throughout this paper, we shall work with the solutions of the incompressible Euler 
system in an open bounded regular and simply connected domain SZ of the plane. Let 
u(t, x) be the velocity field of the fluid, we find it convenient to introduce the scalar 
vorticity w(t, x) = V x u(t, x), and to write the system in the velocity-vorticity 

(14 

formulation : w,+V.(wu)  = 0, 
w(0 ,  x) = w&), 

v x u = w ,  
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I v-u = 0, 

u - n  = O  on 852 (nnormal to852. 

Thus the Euler system appears as a transport equation (1  a) coupled with the elliptic 
system (1  b ) .  

The system (1 6 )  is classically solved by introducing the stream function $ : 
-V2@ = w ,  

$ = O  on 852. 
Then u = V x (@z) where z is the normal unit vector) gives the solution of (1 b). In the 
same way, for a given velocity field u(t ,x),  we can solve ( l a )  by introducing the 
Lagrangian flow q$(x), defined by 

d 
- $ t ( x )  = u(t, $,(x)) dt 

for all x in 52, 

$ 0 ( 4  = x. 
One can easily check that the map q5t is area-preserving (u is incompressible) and that 
the vorticity w is transported by q 5 t :  

w(t, qht(x)) = wo(x)  for all x in 52. 
It is well known that if wo is any regular function on a, ( l a ,  b )  has a unique 

classical solution for all time (Youdovitch 1963; Kato 1967; Bardos 1972). Using the 
notion of weak solution (in the sense of generalized functions) one can extend this 
property to the case where wo is in the space L"(52) of all bounded measurable 
functions on IR (Cottet 1987). Thus the space L"(52) is a convenient choice for our 
phase space, and we denote Gt : L"(52) -tL"(SZ) the Eulerian flow. Gt is related to  the 
above Lagrangian flow $t by the relation: 

@t w o w  = wo($;'Cx)). 

2.2. Stationary solutions 
In the case of stationary solutions, ( l a ,  b )  reduces to  

v .  (wV x ( @ z ) )  = 0. 

This is satisfied for example if w =f($), where f is any continuous function on R, or 
if 52 is a ball centred at 0 and w is rotation invariant. 

2.3. Constants of the motion 
One can easily check that the following functionals are conserved by the Eulerian 
flow : 

the energy 

the integrals I f ( w )  = f ( w ( x ) )  dx, for any continuous functionf; 

if 52 is the ball B(0, R), we must consider also the angular momentum with respect to 
0:  

l Q x  A u(x)dx = (R2-xz)w(x)dx; 
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in the case of periodic boundary conditions, we must take into account the two 
components of the linear momentum so u ( x )  dx instead of the angular momentum ; 
if 52 is not simply connected, there are new constants of the motion given by the 
circulation around the obstacles. 

It can be shown (Serre 1984) that  there are no invariant functionals of the form 

I Q F ( X ,  U ( X ) ,  W X ) )  d X  

s, 

other than those we already know. 

2.4. Expressing the local conservation of vorticity 
It will be convenient to express the local conservation of vorticity in a more abstract 
way. For any (measurable) bounded vorticity function w ,  we define the measure n, 
on R by 

(nwf )  = f ( w ( x ) )  dx. 

n, is called the distribution measure of the function w. It follows from the 
conservation of I f ( w )  for any continuous function f that the measure n, is conserved 
by the Eulerian flow : nGtwo = nwo. We shall say that a vorticity field wf is a reordering 
of w if it satisfies n, = n,,. In  other words, the vorticity a t  time t ,  Gt wo, is a reordering 
of the initial vorticity wo. If wo is made of n patches 52, of value a, and area IQJ, then 
If(wo) = c, 1Q,1 f (a i ) .  Therefore n, is a sum of Dirac masses Sag : n, = & 152J Sag. So we 
see that giving the measure m, is equivalent to giving all the vorticity levels and their 
area. The conservation of nw by the flow represents the conservation of all these 
quantities. 

3. A macroscopic description of intricate vorticity fields 
The actual flow evolution from the initial vorticity field wo is tremendously 

complex and difficult to predict. We only know that the constants of the motion 
must be conserved. Therefore, instead of seeking a deterministic prediction of the 
flow, we consider all the possible vorticity fields &Jx) consistent with the conserved 
quantities. A central result of this paper is that  an overwhelming majority of such 
microstates E(x) is in a neighbourhood of a well-defined macrostate. Therefore, if 
some ergodic property were satisfied, the actual flow evolution would be very likely 
to stay near this macrostate. Of course, we must precisely define a macrostate and 
the notion of proximity with microstates. Since we are in an infinite-dimensional 
function space, this is technically complex, and the details are given in $4. However, 
a simplified heuristical derivation by combinatorial arguments is presented below. 

In  this section, we restrict the analysis to an initial vorticity function made of n 
patches 52, of value a,. Of course any initial vorticity field can be approximated by 
such a function with large n. As time goes on, the function Gt wo still takes the same 
values a,, but the vortex patches generally become more and more intricate. 
Numerical computations by contour dynamics (Zabuski, Hughes & Roberts 1979 ; 
Dritschel 1989) give a good intuition of this highly complex process (but any 
numerical method is limited by the requirement of higher and higher spatial 
resolution as time goes on). Then, it will be convenient to  introduce the new 
macroscopic variables e,(x), i = 1 . . . n,  which give, a t  each point x, the probability of 
finding the value a, a t  point x. Such a probability field e(x)  = (e , (x) ,  ... e , (x) )  will be 
called a macrostate. 
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Since most of the microscopic fields have very fine vorticity structures, we can 
describe them in terms of a local fraction of area for the different vorticity levels in 
a small neighbourhood of each point x. By assimilating this local fraction into a 
probability distribution, we can then associate a macrostate with each microstate. 
The constants of the motion bring constraints to  the macrostates, as discussed now. 
The angular momentum is indeed an integral of the form 

J',f(x) [(x) dx, where f(x) = $(R2 - x2 ) 

is a smooth function of x. Therefore, it is 'ustifiable to replace the rapidly oscillating 

momentum must remain equal to its value in the initial condition, a constraint on the 
macrostate is thus obtained. 

Similarly, it is classically known that the stream function of [ is continuous so that 

vorticity [(x) by its local average O(x) = 5: a, ei(x) in the integral. Since the angular 

E(&) = ;J*e(x)$(x)dx. 

We define the macroscopic stream function Y by -V2Y = a. (Notice that the 
macrostate has fluctuations in vorticity, but as !P is obtained by an integration of 
vorticity, there are no fluctuations in stream function.) Then an integration by part 
gives 

. r  

and the same argument as above yields 

In  other words, the fine-scale vorticity fluctuations do not contribute to the energy. 
As we have seen, the functionals of the form I f ( w )  are expressed as I f ( w )  = 

&lQJf(ai), and the conservation of all these functions is equivalent to the 
conservation of the area of each vorticity patch. Since ei(x)  represents the local 
proportion of this area with respect to the local area element dx, the conservation of 
the area of each patch gives 

Jn e,(x) dx = ISZJ for all i. 

Now, we want to introduce the entropy of a macrostate e(x) = (e,(x), ..., en@)). 
For that purpose, let us consider a small neighbourhood of the point x and split i t  
into N non-intersecting pieces of equal area. Then, we restrict consideration to the 
subset of microstates which take a constant value on each piece. With each such 
microstate we associate the probability distribution (el, . . ., en) given by ei = NJN,  
i = 1, .. ., n, where Ni is the number of pieces where the value ai is reached. With each 
probability distribution (el, . . . , en), we associate the number of ways by which i t  can 
be obtained or multiplicity factor: 

A7 1 
AV : 

"(el, ..., en) = 
( e ,  N )  ! . . . (en N )  ! 
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Then we see, by an elementary analysis, that  the normalized expression (l/N) log 
W(e,, ..., en)  gives a t  the limit, when N becomes infinite, the Shannon classical 
entropy : 

1 
-1ogW .+ -Ce i loge i .  

Now, if we consider the whole domain SZ, the total entropy is clearly the sum of the 
contributions of each area element dx, so the entropy of the macrostate e ( x )  is 

n 

N + a  i-1 

S(e) = - C e i (x)  log e i ( z )  dx. J, i 

This expression is well known as Boltzmann's mixing entropy. Then, if we assume 
that all the microscopic states are equiprobable, the maximum-entropy macrostate 
satisfying the constraints given by the constants of the motion is the most probable 
macrostate ; that  is, it corresponds to the greatest number of microstates satisfying 
the given constraints. Furthermore, it is clear from large-deviation theory that the 
fluctuations would go to zero as the number of parcels N goes to  infinity, so that with 
a probability very close to 1 the system will actually be very close to  the most 
probable state. Notice however that, while this idea corresponds to a 'popular 
wisdom', it is not easy to  prove in our particular case, because of the nonlinear 
constraint given by the energy. The precise formulation is presented in $4. Finer and 
finer scales are reached as time goes on, so that the fluctuations around the state of 
maximum entropy should go to zero. Notice also that the hypothesis of equiprobable 
microstates is too strong for our purpose. In  fact the only requirement is that  the 
probability distribution of microstates is sufficiently spread, so that it does not break 
the property of overwhelming concentration of microstates near the optimal 
macrostate. 

Thus we are lead to solve the following variational problem: find the set of 
functions e* = (e : ,  ..., e;Z) which realizes the maximum value of the functional 

,. 

under the constraints : 

S(e) = - C ei(x) log ei(x) dx, J, i 

C ei(x) = 1 for all x, 
i 

&(e)  = e i (x)dx  = 152,1, i = 1,  ..., n, s, 
E ( C  a, e,(x)) = E(wo),  

i 

and in the case of a circular domain the supplementary constraint 

C ai(R2 - x2) ei(x) dx = (R2 - x2) wo(x) dx. 
1 
5.L i 

This variational problem is studied in $5.  

4. Mathematical formulation of the general case 
We consider now the general case of an initial vorticity function wo belonging to 

the space L"(l2). Our purpose is to show that the set of all the microstates 6 which 
have the same constants of the motion as wo is concentrated about a macrostate, and 
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to determine this macrostate. We need first to give a precise mathematical definition 
of a macrostate and of this concentration property. 

4.1. Young’s measures 
The mathematical definition of a macrostate will be a mapping v 1 x + vx from 52 into 
the space M,(R) of all probability measures on R. At each point x, we have a 
probability distribution of vorticity levels. Such a formulation has been used by 
Young (1942) to solve problems from the calculus of variations, and they are usually 
called Young’s measures. We denote the local average of any continuous bounded 
function F(x,a) on 52 x R by 

lJQI$(x,[(x))dx-j (v,,F,(x, a ) ) &  

52 

JS 

<E for a l l j  = 1, ..., k. 

4.2. The neighbourhood of a macrostate 
The rationale which underlies our definition of a macrostate is that  the fine-scale 
oscillations of a microstate [(x) can be described by a local probability distribution. 
Then for a bounded continuous test function F(x,  a) ,  the integral F(x, [(x)) on the 
domain SZ will be approximated by the integral of the local average 

F(x, [(x)) dx = (vx, w, 1) dx. J* 
Therefore, we have the following definition : 

For E > 0 and any finite set Fl, ..., Fk of continuous bounded functions on 52 x R, we 
define the neighbourhood 4, F , ,  _,,, F k ( ~ )  of a macrostate v as the set of the microstates 
((x) satisfying 

If we choose a small E and a sufficiently rich set of test functions, the microstates of 
this neighbourhood will be closely approximated by the macrostate v, as far as their 
local mean properties only are considered. 

4.3. Constants of the motion and macrostates 
Each constant of the motion will impose a corresponding constraint on the 
macrostates that can be approached by the reordering of the initial state. Indeed, if 
the constant of the motion is of the form S,F(x, [(x)) dx, the macrostate must satisfy 

Otherwise, taking e smaller than the difference between these two quantities, the 
neighbourhood V,,,(v) would not contain any microstate [ with the same constant of 
the motion as the initial state wo. 

Taking F(x, [(x)) = +(Rz-xz) t(x), the relation (2) gives the constraint on the 
angular momentum of the macrostate. The expression for the energy does not take 
exactly the same form, but a similar constraint can be written: 
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where v(x) = lRadv,(a) is the local mean vorticity and Y the corresponding stream 
function (defined by - V 2 Y  = with !P = 0 on the boundary of the domain 52). I n  
other words, the energy of a macrostate v is given by the mean vorticity F, without 
any contribution of the local vorticity fluctuations. The mathematical reason for this 
property is the complete continuity of the map w --t u given by the solution of (1 b ) .  
In the following, when we mention the constraint on that energy, this will also imply 
the possible constraint on the angular momentum. 

The other conserved functionals If([) lead to relation (2) with F ( x ,  [(x)) = f ([(x)) : 

< v , J  ( )) dx = f @O(X)) dx. J* 
This relation, valid for any continuous function f on 54, can be written in the more 
compact form, using the measure n,,, defined in $ 2 :  

We shall say that a macrostate v which satisfies this relation is a mixing of the 
vorticity wo. So we see how the constants of the motion bring constraints to  the 
macrostates about which the microstates can possibly concentrate ; they have to  be a 
mixing of the vorticity wo with the right energy E(wo) (and momentum). 

4.4. The concentration property 
We denote by % an equipartition of 52, that  is, a finite partition of 52 into subsets 52, 
of equal area. We denote n(%) the number of elements of 9 and define the diameter 
of %: 

a(%) = sup6(52,), where S(52,) = sup Ix-x’l. 
i X.X’ER( 

For any equipartition X, we define a random microstate wI by the expression 

where A, are n(%) equally distributed independent random variables with common 
distribution (l/lSZl) mwo, and 1,( denotes the characteristic function of the set Qi (equal 
to  1 inside Qi, and 0 elsewhere). A choice of the elementary events is inherent in any 
probability theory : this choice corresponds to the generalization of the method used 
in $3, and it will be justified below in the remarks. 

We can then give a definition of the concentration property. We shall say that a 
set A of microstates is concentrated about a macrostate v* if: For every neighbourhood 
[,F1.,,Fk(~*), there is a number a > 0 such that for any equipartition X with small 
enough diameter 6(9), the conditional probability 

Prob (@%$ K,F1...Fk(V*) I &.YEA) 

is less than exp ( - n ( X )  a). 
Of course we can replace v* by any set b* of macrostates in this definition. 
Then, our programme is to  consider the set A of all the reorderings of wo which have 

the same energy, that is 

A = { [ E L ~ ( S Z )  1 ng = nwo and E(5)  = E(wo)} .  
The set b* will be found by maximizing the Kullback entropy that we dcfinc below. 
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Let us denote by n the most mixed macrostate, given by n, = (l/lsZl) nwo, for all x. It 
is of course a mixing of wo, but generally has not the same energy as wo. The Kullback 
entropy of v with respect to  n is defined by the formula 

K,,(v) = -ln( / R l o g ~ d v , ) d x ,  dn, 

where dv,/dn, is the standard notation for the density of v, with respect to n, (i.e. 
the ratio of the two probability densities v, = (dv,/dn,)n,), and we use the 
convention that swlog (dv,/dn,) dv, = + 00, if v, is not absolutely continuous with 
respect to n, (i.e. has no density function). The non-negative functional jslog 
(dv,/dn,) dv, is a classical indication of the ‘ distance ’ between the two probability 
measures v, and nx. Therefore K,,(v) indicates how far the macrostate v is from the 
most mixed state. 

The method then relies on the following two results (which are proved by use of the 
large-deviation theory, see Robert 1989, 1990, 1991) : 

Concentration theorem. The microstates of the set A are concentrated about the set 
8* of all the macrostates v* that  realizes the maximum value of K,,(v) : 

K,,(v*) = max {K,,(v) I v mixing of wo and E ( q  = E(wo)} .  

Invariance theorem. The concentration property is conserved by the Eulerian flow. 
That is, if a set 0 of microstates is concentrated about a set d of macrostates, then, 
for all t ,  @,(@) is concentrated about @,(b), where, for a macrostate v, we define @,(v) 
by 

@ t ( V ) ,  = V$b;’(x,, 

g3t being the Lagrangian flow associated with the initial vorticity F. (Heuristically, we 
may say that the fine-scale oscillations are merely frozen and convected by the mean 

4.5. Remarks 
(i) Notice that our notion of concentration depends on the choice of a basic 
probability measure no = (l/lsZl nw0 on R. Thus i t  would be more accurate to say, in 
the conclusion of the concentration theorem, that the set A is no-concentrated about 
b*. But, because we work with macrostates which are mixtures of wo, to a large 
extent this concentration properties does not depend on this particular choice of no. 
Indeed, we can see that A is also n,-concentrated about b* for any probability 
distribution n1 which satisfies 

flow.) 

n1 =p(a )no ,  withJRlogp(a)dno(a) >-a. 

Let us denote as d the set of mixtures of wo such that E(F) = E(wo),  and n’ the 
macrostate n: = n1 for all x. Then, for all v in 8, we have 

but as u,dx = nwo, the second term is equal to lsZl jRlogp(a) dno(a) which is a 
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constant independent of v. Therefore 8* is also the subset of 8 on which KJv) reaches 
its maximum value. Then, the concentration theorem applies again and implies that 
A is n,-concentrated about b*. 

(ii) The concentration property depends also on the choice of an equipartition as 
the support of a random microstate. (This property is not really necessary: the 
repartition of the subset areas needs only to be sufficiently regular in the partition.) 
This choice of an equipartition is quite natural because of space homogeneity. It is 
a posterior justified from the dynamics by the invariance theorem, showing that the 
concentration property is invariant for the Euler flow. This theorem would not apply 
if the concentration property were artificially produced by the choice of a very 
inhomogeneous basic partition. The invariance theorem can be viewed as an ersatz 
of the Liouville theorem which classically provides a natural invariant measure in 
phase space. In our case, we can only show the consequence of this theorem that is 
really relevant for a macroscopic description : the invariance of the concentration 
property by the flow. 

(iii) We can show, by standard compacity arguments (Ellis 1985), that the set 8* 
is always non-empty. The case where d* is not reduced to a point corresponds to a 
phase transition situation. 

Let us return now to our programme. We can easily verify that the set b* is Gt 
invariant (i.e. Gt(8*)  = 8*). This comes straightforwardly from the definition of 
Gt v. 

If V E ~ * ,  we have E(Gt v) = E(Gt v) = E(C?,(q) = E ( q  = E(v) and 
L L 

by the change of variable x' = q5;l x. So, Gt v satisfies the same constraints as v. 
Making the same change of variable x' = q5r1 x and noticing that n, is constant, we 

get 

Our assertion follows : 
We call 8; = {71 v * E ~ * }  the equilibrium set. If we suppose that b* = {v*}, we 

have cDt v* = v* for all t, and thus w* = P is a stationary solution of the Euler 
system. 

KJ@t v) = K*(v). 

5. Computation of the equilibrium states, the equation of Gibbs states 
5.1. Kullback and Boltzmann entropy 

We have now to solve the variational problem : Find the macrostates v* satisfying 

K,,(v*) = max KJv) I v,dx = nuo,E(v) = E(w,) , (3) { I 1 
where wo is any initial vorticity in L"(0) .  We have seen in the previous remarks that 
such v* always exist. 

We begin with the simpler case where wo takes only a finite number of distinct 
values a,, . . ., a,. Then, we have seen that nuo = ISZJ + .. . + J0,I 6,; It is clear that 
any mixture of nu, must be of the form v, = e,(x) da1+ ... +e,(x)&,,, with the 
constraints 

F,(e, .. . en) = lQet(x) dx = ISZJ, i = 1 ... n. 
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The most mixed state is such that ei(x) = IQ,l/lQl, for every x;  that is n, = 
(l/lQl) nw0. The probability distribution v, is obtained by multiplying n, by a function 
of a equal to  et(x) l Q 1 / l Q I 1  for a = a,. This function is equal to dv,/dn,. Therefore the 
Kullback entropy is written 

Since the second term is a constant, this entropy is indeed equivalent to the 
Boltzmann entropy, and we find again the variational problem stated a t  the end of 

5.2. The case of a piecewise-uniform initial vorticity 
As e = (el, . .. , en) must satisfy the supplementary constraint c:-, ei(x) = 1, there 
remain only n- 1 independent constraints F,, . . ., F,-,. Let e:, . . ., e,* be a solution of 
our variational problem. Then, from the Lagrange multipliers rule, there are 
constants a = (a,, ..., a,-,) and /3 such that the first variations of the functionals 
satisfy 

6s = pSE+ x aiSF, 

§3* 

n-1 

I = 1  

for all variations Set such that xi  Sei = 0. Straightforward computations give 

SS = - x (1  +loge:) Sei dx, I* i 
s, i 

SE = $*(Ca,Se,)dx, 

where Y* is the stream function associated to the vorticity x;-,ai(e:(x), and so 

Then, we easily get 
exp ( -ai-/3ai Y * ( x ) )  

Z (  Y*(x)) 
ef(x) = , 

where the partition function 2 is given by 
n 

Z(Y)  = xexp(-ai-/3aiY) 
i=l 

and we take a,  = 0 by convention. 
Therefore Y* satisfies the equation of Gibbs states: 

i d  -V2Y* = xa ie : ( x )  = ---logZ(Y*), 
i Pd'V 

Y*=O on aQ. 

(4) 

So, we see that if e* is a solution of the variational problem, there are constants a, 
/3 such that e: is given by (4) and Y* by (5 ) .  
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Conversely, for any given set of parameters a, /3 we can consider a solution Ya,P of 
the nonlinear equation ( 5 )  (as the right-hand side of the equation is of the formf( Y*), 
with f continuous and bounded, we know, using Schauder's fixed-point theorem, that 
a solution, in general not unique, always exists) and the associated Gibbs state ea,P 
given by (4). Of course e"*P is a critical point of the functional: 

n-1 

(-1 t 
J ( e )  = S(e) -  cc,&(e)-BE(e) on the linear manifold Zee , ( x )  = 1. 

Furthermore we prove the following result 

THEOREM. If /3 > - A,/(sup, a,"), where A, > 0 is  the first eigenvalue of the operator 
-V2 (associated with the Dirichlet boundary value condition), then ea*P is the unique 
maximum of the functional J ( e )  on the set defined by e,(x) 2 0, i = 1 ... n, C,e,(x) = 1. 

Proof. We shall prove that the functional J ( e )  is strictly concave on the set defined 
by 0 < e,(z) < 1, i = 1 ... n. With that aim, let us compute the second variation S2J 
for any variation Se,. Straightforward computations give 

where we denote Sw = C, a, Se,, and SY is the stream function associated to Sw. As 
S2F, = 0, we obtain 

Let us consider first the case /3 2 0. Then we have, by Green's formula, 

from which 

thus J is strictly concave. 
We consider now the case p < 0. Using the well-known inequality 

IQ6YSudx < - (Sw)2dx 4 'I P 
we get 

We have 

and Cauchy-Schwartz inequality gives 
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from which S2J < -8 l+-(supa,2) x (Se,)2dx. [ h", 1 I[*, 
And we see that for /3 > -(h,/sup,a,2), S2J is < 0. As ea.p is a critical point of J ,  i t  is 
the unique point on which J reaches its maximum value. 

Remarks. (i) A consequence of this result is that, for /? > -A,/(sup,a,2), the Gibbs 
state ea.p is a maximum of S(e) subject to the constraints 

Cei = 1, E(e) =E(ea.p), &(e)  =&(e"*p),  i = 1 ... n. 

(ii) As usual, we replace the consideration of the constrained maximization 
problem for S(e) by the consideration of the equation of Gibbs states, equation (5). 
The general consideration of (5 )  for all values of the parameters a,/? is far from 
obvious, because many bifurcation phenomena can occur (see Sommeria et al. 1991). 

(iii) As /? is the Lagrange multiplier of the energy constraint, i t  is the inverse of a 
temperature. And the above theorem proves the existence of equilibrium states with 
a negative temperature (this phenomenon was foreseen by Onsager (1949)). 

(iv) When some supplementary constants of the motion occur, we must take them 
into account. This leads, of course, to some modifications in the equation of Gibbs 
states. For example, when 52 is the ball B ( 0 , R )  we must consider the angular 
momentum 

M = - (R2-x2)  W(X) dx. :: s, 
Then the Lagrange multipliers rule introduces a new multiplier y : 

6s = /?SE + C a, S t  + ySM, 

and we get the new Gibbs states 

-v2y= 
a, exp { - a, -a,[PY ++y(R2 -x2  )I) 

Z 9 

Y=O on 352, 

where Z = x exp { - a, - ai[PY + +y(R2 - x2 11)- 
Radial solutions Y(r) of (6) are stationary solutions of Euler equations, but non- 

radial solutions, which may occur by a breaking of rotation invariance after a 
bifurcation (when -/? becomes large), are generally not stationary, owing to 
the presence of the term in R2-x2 .  The change of stream function # = Y+ 
(y/2/?) (R2-x2) ,  which corresponds to a change of reference frame (the new frame 
being in uniform rotation), gives again stationary solutions. 

5.3. The general case 
The general case of any measurable and bounded initial vorticity wo can be studied 
in a similar way. I n  yields the generalization of (4) for the optimum state v (we omit 
the star that labels the optimum state) : 

where Z (  y3 = j e x p  [ -a(a) -pa !PI dno(a), and no = (l/lsZ() nu?. The Lagrange mul- 
tipliers a,, ..., a,, are now replaced by the continuous function a(a). Notice that 
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(dv,/da) (a )  is the probability density for finding the vorticity a at position x, and 
dn,/da the global density of the initial vorticity distribution. 

Then the generalized Gibbs state can be written: 

Y=O on &?, 

with Y also satisfying the following constraints : global conservation of vorticity 

conservation of energy W 2 Y d x  = -E(w,) .  

General properties of this generalized Gibbs state can be obtained. Let us denote 

4x1 = JRexP [-a@) +XU1 dno(4. 

Then the right-hand side of (7) can be written 

The function log z(x) is strictly convex ; indeed, we have 

and this last term is strictly positive by application 
inequality : 

of the CauchySchwarz 

( J a  exp [ - "1 exp [ - + ""1 
< ( Jexp [ -a(a) +Xu] dn, a2 exp [ - a(a) +XU] dn, 

Then we get the striking result that for a Gibbs state, the function 6 = f( y) is either 
strictly decreasing (case p > 0) ,  or strictly increasing (case /3 < 0) ,  or perhaps a 
constant (if p = 0). Furthermore, we have 

< max{a2/aEsuppno}, 

and we can prove the following (Robert 1991) : 

PROPOSITION. For -Bmax{a21aEsuppn,} < A,, there i s  a unique solution to (7). 

5.4. Isolated vortex structures 
Fairly isolated vortex structures are often observed in two-dimensional turbulent 
flows. As already foreseen by Onsager (1949), such vortices must correspond to a 
negative temperature. Indeed, a vortex core corresponds to an extremum of the 
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stream function, V2Y is positive for a minimum and negative for a maximum. Let us 
assume that Y is maximum, and therefore the vorticity -V2Y is positive. Assume 
also that Y vanishes on the walls, then Y is positive. Now, if p is positive, o = f ( Y) 
must be a decreasing function of Y so that o would increase from the vortex core to 
the wall. The vorticity would be essentially located a t  the walls. For /3 negative the 
vorticity is concentrated in the vortex core, as expected. When Y is minimum in the 
vortex core, we only have to reverse the sign to get the same conclusion. 

Let us consider the special case of a structure produced by a localized initial 
vorticity excitation, which reaches a stable configuration after strong mixing 
with the surrounding irrotational fluid. In  this situation, which we call the dilute 
case, the main contribution to the vorticity distribution no comes from the vorticity 
level a = 0, so that no is close to the Dirac distribution centred in 0, and 
Z (  Y) % exp [ -a(O)] = Z(0) ; then we get the approximate Gibbs equation 

Since we are interested in localized vortices, we consider only the case /3 < 0. We see 
immediately that all the even derivations of z ( x )  are positive. Therefore the vorticity 
is an increasing function of Y,  whose second derivative is also increasing. 

When the initial state is dominated by the positive vorticity, all the derivatives of 
z(x) become positive, so f (!P) is a convex function very similar to an exponential. 
When the contribution of positive and negative vorticity is symmetric, we may 
assume that a( -a) = .(a), and we can write 

z ( x )  = 2 /om exp [-.(a)] cosh (Xu) dn,(a). 

Therefore, the second derivative off has the same sign as Y :  the function f is convex 
for positive Y and concave for negative Y ,  it behaves very much like a sinh function. 
Of course, these results apply only for the dilute case. In  general the effect of the 
denominator Z(!P) in equation (7) is to make the vorticity saturate in the vortex 
cores, so that it never exceeds the initial extrema. 

6. The role of viscosity and the stability of the equilibrium states 
We can take into account the effect of a very small viscosity by assuming that first 

the flow develops inertial vorticity structures at very fine scale, and then the 
supplementary term - ( l / R e )  V20 has a filtering effect on the small-scale oscillations 
of the vorticity o(t, z). Thus the final flow can be assimilated with the local average 
a of our theory. It was shown in $ 3  or 84.3 that the energy of this final mean flow 
must be equal to the energy of the initial field w,,. Furthermore, the equilibrium 
macrostate is a mixing of the initial state, and all the functions of the vorticity are 
globally conserved in this inertial phase. The enstrophy is thus globally conserved 
but it goes partly into the local fluctuations and partly into the mean vorticity a. 
Thus, denoting as 2 the local average of the squared vorticity, 

Q2dX < 0 2 d x  = w:dx. I, L- I, 
If the fluctuations are suppressed by a small viscosity, their enstrophy is dissipated, 
and only the contribution of the mean flow Gi remains. The same inequality applies 
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for higher even momenta of vorticity. Therefore our theory is consistent with the 
usual distinction between the rugged and dissipated integrals : the energy, total 
circulation and momentum are still conserved in the presence of a small viscosity, 
while enstrophy and higher-order vorticity momenta are dissipated. Notice that this 
irreversibility is already present in the purely inviscid theory : part of the enstrophy 
of the initial ordered state goes to the microstate fluctuations. This is analogous to 
the irreversible transfer of mechanical energy into thermal motion which appears in 
ordinary statistical mechanics. 

Then we may wonder whether the equilibrium state has some stability property. 
What do we get as equilibrium state if we repeat the process and take w* = Q as 
initial vorticity ? Let Y* be the unique solution of the general Gibbs state equation, 
with w* the corresponding vorticity. Then, it can be shown that Amol’d’s classical 
estimates (Arnol’d 1969) apply and give the following stability result : any bounded 
initial vorticity w,, gives a solution w(t) of the Euler equations, which satisfies the 
inequality 

(w(t)-w*)2dx < C[Q(w,,-o*)2dx for all t ,  

where C is some > 0 constant. 
Furthermore, we can prove that if u is a mixture of w* such that E(v)  = E(o*) ,  

then, for all x, v, = aWoI(,). So, if we repeat the process, starting with w* we shall get 
w* again as the equilibrium state. 

J* 

7. Discussion 
This theory provides clear formulae that can be compared to numerical simulations 

or experiments. In a strictly inviscid fluid, the theory predicts the local statistical 
distribution of vorticity levels at any given time after a long evolution, beyond any 
cascade processes. A scale separation between the mean flow and the vorticity 
fluctuations is implicit in our macroscopic description. This is why the closure 
problem can be solved. This choice for the macroscopic description is justified by the 
concentration theorem. There are more and more possible microscopic states as we 
consider fields with smaller and smaller scales. Therefore it is not surprising that the 
microstates concentrate toward a macrostate. 

When the vorticity fluctuations are smoothed out by a weak viscosity, a 
relationship between vorticity and stream function in the final steady state is 
predicted. However, the equations which define this equilibrium state have generally 
no explicit solutions, even in the restricted case of an initial condition with a few 
uniform vorticity patches (except for a case considered by Sommeria et at. 1991). A 
numerical exploration for simple cases is in progress, but this is made difficult by the 
presence of bifurcations and multiple solutions. The Lagrange multipliers have to be 
related to the constants of the motion, which are set by the initial condition of the 
flow. 

Another possible test is to measure directly the curve w =f(+) in experiments or 
numerical simulations and compare with theory, considering the Lagrange 
parameters ai and /3 as fitting parameters. By contrast with earlier theories of 
optimal vortex structures, like the minimum-enstrophy vortices of k i t h  (1984), the 
present theory predicts a final state and relationship f that do depend on the initial 
values of all the constants of the motion. A direct quantitative comparison with 
theory is possible only for initial conditions with a very limited number of initial 
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vorticity levels. Otherwise the number of adjustable parameters (at and /3) would be 
too big for a significative test. Because of these constraints, we could not find any 
convenient example in the literature where such quantitative tests could be done. 
Therefore we have performed numerical simulations of a shear layer starting as a 
band of uniform vorticity. The results, presented in the paper by Sommeria et al. 
(1991), are found to show excellent agreement with theory. Laboratory experiments 
are also in progress, in which the two-dimensional flow is produced in a layer of 
mercury submitted to a transverse magnetic field. The flow is gcnerated in a circular 
box by an appropriate distribution of electric current, and the final steady structure 
resulting from a complex flow evolution is studied. A good fit of f(slr) with the 
predicted relationship is also obtained. However, with some initial conditions new 
vorticity levels are brought into the domain by boundary-layer detachment. In that 
case, the relation with the theory for Euler flows is not clear, even at large Reynolds 
number. 

In  many interesting instances of spontaneous flow organization, isolated vortex 
structures are produced, far from the boundaries of the fluid domain. These 
monopoles, dipoles or even tripoles are observed in numerical computations (Legras, 
Santangelo & Benzi 1988) or laboratory experiments (van Heijst & Kloosterziel 
1989). Although the theory presented here is for the case of a bounded domain, it can 
be extended to the unbounded case, where some supplementary technicalities are 
needed. In general, such vortex structures arise in a part of a turbulent flow and it 
is not possible to clearly identify the initial condition. I n  laboratory experiments, the 
initial flow is often three-dimensional and becomes two-dimensional under the 
influence of an external force like stratification or electromagnetic forces. Therefore 
we expect from the present theory that the final vortex structure is not easily 
predictable. A precise prediction would require a good control of the initial condition. 
However, general properties can be deduced, as shown in $5 .  First of all it was proved 
that isolated vortex structures must correspond to negative temperature, so that w 
is a strictly increasing function of $. Most often, such structures result from a strong 
localized vorticity perturbation, or remain as ‘islands ’ in a background of turbulence 
with strong mixing and low vorticity levels. Therefore the dilute approximation 
defined in $5.4 can be applied to these structures. Thus the theory predicts that for 
monopoles or symmetric dipoles, f’ is extrcmal a t  the vortex cores (see $5.4). These 
properties have been noticed by Nguyen Duc & Sommeria (1988) in experiments with 
vortex pairs, and had remained unexplained. Similar behaviour is also observed in 
numerical simulations mentioned in that paper. This contrasts with the structure of 
vortices produced by more gentle processes (Deem & Zabusky 1978), which reach a 
stable structure close to  patches of uniform vorticity. These correspond to cases with 
little mixing, for which the vorticity saturates a t  the initial values. 

One of the important applications of two-dimensional turbulence is geophysical 
fluid dynamics, and this theory should provide predictions on the equilibrium flow 
structures in the atmosphere or ocean. The theory can be readily applied to a 
spherical geometry, with the advantage that the flow can be bounded without the 
presence of lateral walls with possible boundary-layer detachment. The presence of 
a Coriolis force can be easily taken into account in the frame of the quasi-geostrophic 
approximation. The resulting equations are the two-dimensional Euler equations 
where the vorticity has been replaced by the potential vorticity. The present theory 
can be applied to  this case as well, by replacing the vorticity by the potential 
vorticity in equation ( 5 )  but keeping the same relation (1 b )  between vorticity and 
stream function. The extension to a multi-layer system is straightforward. The 
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theory applies also to more general approximations of slow motion close to 
geostrophic balance. The models need to conserve a potential vorticity and energy, 
and to possess an invertibility principle: the whole evolution is determined by the 
potential vorticity field, and the stream function can be calculated from the vorticity 
field by inverting a differential operator, like the Laplacian in the quasi-geostrophic 
approximation. In particular this theory can be applied to the semi-geostrophic 
model of Hoskins, McIntyre & Robertson (1975), or the more general models 
proposed by Salmon (1985). It cannot be applied to models that break the invariants 
of the motion. 

Earlier theories of equilibrium statistical mechanics had some success in predicting 
a variety of atmospheric or oceanic flow regimes (Holloway 1986). Our theory can be 
applied to these situations, but also accounts for more localized eddies in a unified 
way. It can be considered as a generalization of the idea of potential vorticity mixing, 
which has been successful in explaining the general oceanic circulation (Rhines 1986). 
Our theory would reduce to the mixing of potential vorticity in the absence of 
constraints due to energy conservation. 

In most cases of geophysical interest, the flow structures do not arise in the final 
stage of a flow evolution, but are permanently forced. However, we can consider the 
case of inertial structures, which are controlled by advective effects, while a weak 
forcing maintains the flow against dissipation. This is surely an excellent 
approximation in many cases, such as the oceanic currents, the atmospheres of giant 
planets, or the Earth’s stratosphere. Friction and forcing effects are more important 
in the Earth weather systems, but a description in terms of potential vorticity 
transport is still a good approach, as discussed by Hoskins et al. (1985). The present 
theory can be expanded to such weakly forced cases using an adiabatic 
approximation : the flow stays in statistical equilibrium but the Lagrange multipliers 
slowly vary with time. This could provide a frame for a modelling of atmospheric 
regimes and climate. 
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